Introdução ao Estudo de Linguagens de Programação

Sérgio Queiroz de Medeiros sergio@ufs.br

15 de março de 2012

Como eram os programas em 1940?

- Programadores usavam as instruções disponíveis na máquina física (código de máquina).
- Programa para calcular o máximo divisor comum de dois números inteiros em linguagem de máquina:

```
55 89 e5 53 83 ec 04 83 00 00 39 c3 74 10 8d b6 75 f6 89 1c 24 e8 6e 00 e4 f0 e8 31 00 00 00 89 00 00 8b 5d fc c9 c3 29 c3 e8 2a 00 29 c3 39 c3 d8 eb eb 90
```

Linguagens de montagem (assembly)

- Permitiram associar nomes às operações.
- Programa para calcular o máximo divisor comum de dois números inteiros em linguagem assembly:

```
pushl %ebp
                             jle D
   movl %esp, %ebp
                             subl %eax, %ebx
   pushl %ebx
                         B: cmpl %eax, %ebx
   subl $4, %esp
                             jne A
   andl $-16, %esp
                         C: movl %ebx, (%esp)
   call getint
                             call putint
   movl %eax, %ebx
                             movl -4(%ebp), %ebx
                            leave
   call getint
   cmpl %eax, %ebx
                             ret
   je C
                         D: subl %ebx, %eax
A: cmpl %eax, %ebx
                             jmp B
```

Surgimento de compiladores

- Um compilador traduz uma linguagem de alto nível para código assembly ou código de máquina.
- Programa para calcular o máximo divisor comum de dois números inteiros em uma linguagem de alto nível:

```
int gcd(int a, int b) {
  while (a != b) {
    if (a > b) a = a - b;
    else b = b - a;
  }
  return a;
}
```

- ► Fortran: primeira linguagem de alto nível (≈ 1956).
- Compiladores reais são ferramentas complexas.

Por que existem tantas linguagens?

- Evolução das linguagens: a ciência da computação ainda é uma disciplina jovem.
- Linguagens para propósitos especiais.
- Preferência pessoal.

O que faz uma linguagem popular?

Position Sep 2011	Position Sep 2010	Delta in Position	Programming Language	Ratings Sep 2011	Delta Sep 2010	Status
1	1	=	Java	18.761%	+0.85%	Α
2	2	=	С	18.002%	+0.86%	Α
3	3	=	C++	8.849%	-0.96%	Α
4	6	††	C#	6.819%	+1.80%	Α
5	4	1	PHP	6.596%	-1.77%	Α
6	8	††	Objective-C	6.158%	+2.79%	Α
7	5	11	(Visual) Basic	4.420%	-1.38%	Α
8	7	1	Python	4.000%	-0.58%	Α
9	9	=	Perl	2.472%	+0.03%	Α
10	11	t	JavaScript	1.469%	-0.20%	Α
11	10	1	Ruby	1.434%	-0.47%	Α
12	12	=	Delphi/Object Pascal	1.313%	-0.27%	Α
13	24	11111111111	Lua	1.154%	+0.60%	Α
14	13	1	Lisp	1.043%	-0.04%	Α
15	15	=	Transact-SQL	0.860%	+0.09%	Α
16	14	11	Pascal	0.845%	+0.06%	A-
17	20	ttt	PL/SQL	0.720%	+0.08%	A
18	19	t	Ada	0.682%	+0.01%	В
19	17	11	RPG (OS/400)	0.666%	-0.05%	В
20	30	11111111111	D	0.609%	+0.20%	В

O que faz uma linguagem popular?

- Poder expressivo
- Facilidade de uso por novatos
- Facilidade de implementação
- Padronização
- Código aberto
- Bons compiladores
- Razões econômicas, patrocínio, inércia

Classificação de linguagens de programação

- Linguagens Declarativas
 - Funcionais: Lisp/Scheme, ML, Haskell
 - Fluxo de dados: Id, Val
 - Lógicas, baseadas em restrição: Prolog, planilhas
- Linguagens Imperativas
 - Von Neumann: C, Ada, Fortran
 - Scripting: Perl, Python, PHP, Lua
 - Orientadas a objeto: Smalltalk, Eiffel, C++, Java

Por que estudar linguagens de programação?

- Entender características obscuras.
- Escolher entre maneiras alternativas de expressar computações.
- Fazer bom uso de depuradores, assemblers, linkers e ferramentas relacionadas.
- Simular características úteis em linguagens que não a possuem.
- Fazer um melhor uso da tecnologia de linguagens.

Critérios de avaliação de Linguagens

- Legibilidade
- Redigibilidade
- Confiabilidade
- Custo

Legibilidade

- Facilidade com que programas podem ser lidos e entendidos.
- Facilidade de manutenção é, em grande parte, determinada pela legibilidade dos programas.
- Computação é a arte de contar a outro ser humano o que você quer que o computador faça.
 Donald Knuth

Legibilidade

- ► A ortogonalidade de uma linguagem possui grande influência sobre a sua legibilidade.
- Ortogonalidade: possibilidade de combinar um conjunto relativamente pequeno de mecanismos primitivos para construir as estruturas de controle e de dados da linguagem.
- O significado de um recurso ortogonal é livre do contexto de sua ocorrência em um programa.

Legibilidade

- Sintaxe da linguagem
 - Identificadores
 - ANSI BASIC (1 letra + 1 dígito): B2
 - FORTRAN77 (6 caracteres): SALARI
 - Forma e Significado
 - * em C: *p = (*p)*q;
 - this em Java: construtor da classe ou o próprio objeto?

Redigibilidade

- Facilidade com que uma linguagem poder ser utilizada para criar programas para o domínio de problema escolhido (facilidade para criar abstrações).
- A expressividade de uma linguagem influencia a sua redigibilidade e a sua legibilidade

```
i = i + 1;
i += 1;
i++;
++i;
```

 Simplicidade x Ortogonalidade x Legibilidade x Redigibilidade

Confiabilidade

- Checagem de tipos (estática x dinâmica)
- Tratamento de exceções (try / catch / finally)
- Aliasing
 - Existência de diferentes métodos de acesso a uma mesma célula de memória
 - Mais de um apontador para uma mesma variáel
- Legibilidade e Redigibilidade
 - Quanto mais fácil descrever e ler, maior a confiabilidade do programa.

Custo

- Treinamento de programadores
- Ambiente de programação para a linguagem
- Manutenção dos programas

Outros critérios

- Eficiência
- Portabilidade
- Facilidade de aprendizado
- Consumo de memória
- Padronização

Implementação de LPs

- Compilação
 - Tradução de código fonte para linguagem de máquina
- Interpretação pura
 - Código fonte é interpretado sem nenhuma conversão
 - Execução do programa é mais lenta
- Implementação híbrida
 - Código é traduzido para uma linguagem intermediária
 - Uso de uma máquina virtual

Compilação Just-In-Time (JIT)

- Traduz parte do código intermediário para linguagem de máquina
 - Trechos de laços aninhados (executados inúmeras vezes)
 - Custo da tradução x Redução no tempo de execução
- Existem compiladores JIT para diversas linguagens
 - Java, C#, Lua

Visão geral de um compilador

- Frond end
- Back end

Referências

- Programming Language Pragmatics (Michael Scott)
 - Capítulo 1
- Concepts of Programming Languages (Robert Sebesta)
 - Capítulo 1
- http://www.tiobe.com/index.php/content/paperinfo/tpci/