
1

Specifying Design Rules in 

Aspect-Oriented Systems

Alberto Costa Neto

Supervisor: Paulo Borba

Co-Supervisor: Fernando Castor

Federal University of Pernambuco
{acn, phmb, castor}@cin.ufpe.br



2

Modularizing of Crosscutting Concerns 
with AOP

Classes with CCC
tangled and scattered

Classes without CCC CCC implemented by Aspects

OO approach AO approach

� Examples

� Logging, distribution, tracing, security, persistence and 

transactional management



3

Benefits of AOP

� Better code localization (non-scattered)

� Less code (in most cases)

� More implementation units

� Classes are more reusable

� Does it lead to 

well modularized systems?



4

Does AOP lead to systems that...

� Are easier to understand? 

� Can be modified without ripple 
effects?

� Support parallel development
and independent evolution of 
modules?



5

Are AO systems Well Modularized?

� Comprehensibility?

It is difficult to reason about 

a Class or Aspect in 

isolation

� Changeability?

Changes in a Class may 

break Aspects

� Parallel Development?

Classes must be developed 

before Aspects



6

What causes modularity issues in AOP

� AOP introduces new types of dependencies (hidden parts)

� Privileged aspects (access to private members)

� within and withincode

� (Un)expected join points and members

Hidden

Part

Public Part

Hidden

Part

Public Part

Aspect Class



7

Problem

AOP ���� Crosscutting Concerns Modularization

↑ Better Crosscutting Modularity

↓ Breaks Class Modularity



8

Is there any solution?



9

Design Rules

� They generalize the notion of information hiding and 

interfaces

� Constitute the interfaces that designers use to 

connect modules with each other

� By defining Design Rules we can recover Class 

Modularity

Class Aspect
Design

Rules

Class Aspect



10

Expressing Design Rules

� Sullivan documented 

DRs using natural 

language

� Verbose, 

incomplete,

inconsistent and 

ambiguous specifications

� Too expressive but 

cannot be checked 

automatically

DR Update State from HyperCast



11

Expressing DRs with XPIs (Griswold)



12

XPI Contract

� Not expressive enough

� Error-prone



13

Natural Language and XPI Limitations

No language with the specific purpose of

describing DRs in AO systems!

Verbose, Incomplete, Inconsistent, Ambiguous

Specifications + No automatic checking (NL)

Not expressive enough and error-prone (XPI)



14

Hypothesis

The use of a language that was designed with the sole 

purpose of specifying design rules, with

a clearly defined semantics and expressive enough

to specify most of the design rules in AO systems,

improves both class and crosscutting modularity, 

when compared to an oblivious approach, 

but does not present the problems of

informal design rules and XPIs.



15

Our Approach

� A Language for Specifying Design Rules 

(LSD)

� Decouples classes and aspects

� Improves Class and Crosscutting Modularity

� Syntactically similar to Java/AspectJ

� Unambiguous semantics

� Automatic checking



16

Major Steps of the Development Process 
with LSD

Discuss and

establish the DRs

Write the DRs

in LSD

Develop

Classes

Develop

Aspects

Determine a

DR Instance



17

Discussing a DR - Display Update 
Concern of a Drawing Tool
1. FigureElement methods called set* (starting with set, like setX) and 

moveBy must be public and return void. Also, all constructors
must be public.

2. FigureElement constructors and methods called set* or moveBy
are the only possible points of state change in figure elements.

3. Methods called set* or moveBy and constructors must change 
some attribute of the figure element.

4. Methods called set* or moveBy and constructors cannot call any 
method called set* or moveBy from a FigureElement.

5. A Display class must have a public void update() method.

6. The aspect responsible for updating the display must declare a 
pointcut called stateChange that intercepts calls to the 
methods/constructors that change figure elements state based 
on their names (predetermined).

7. The aspect must also contain an advice that calls Display.update(). 
This method cannot be called from any other place in the system.



18

Writing a DR in LSD



19

DR Overview
Name

Parameters

Structural

Rules



20

Display Structural Rule

5. Display class must have a public void update() method



21

FigureElement Structural Rule

2. FigureElement constructors and methods called set* or moveBy

are the only possible points of state change in figure elements.

3. Methods called set* or moveBy and constructors must change

some attribute of the figure element.



22

DisplayUpdate Structural Rule

7. The aspect must also contain an advice that calls Display.update().

This method cannot be called from any other place in the system.

6. The aspect responsible for updating the display must declare a pointcut

called stateChange that intercepts calls to the methods/constructors

that change figure elements state based on their names (predetermined).



23

Implementing Classes/Interfaces



24

Implementing Aspects



25

Defining a DR Instance

DR Parameter

Component that

implements the DR



26

LSD Formal Semantics



27

Specifying LSD semantics in Alloy

� Alloy is a formal modeling language

� Signatures: describe the elements of a model

� Facts: describe relationships between signatures and their 

elements

� We chose Alloy due to:

� Previous experience

� Tool support to perform analysis in specifications (Alloy 

Analyzer)

� Simplicity in expressing first-order logic constraints

� We mapped LSD constructs to a Theory specified 

in Alloy



28

Theory

� Abstract Syntax of all elements in our theory

� Classes

� Aspects

� Methods

� Fields

� Advices

� A



29

Translating Display to Alloy

Translation to Alloy



30

General Translations: Method Declaration



31

Applying Translations

Apply translations from catalog
DRs in

Alloy
DRs in

LSD T1 T2 Tn?



32

COLA: 

Compiler for LSD and AspectJ



33

COLA Overview

� Tool for checking DRs in AspectJ programs

� Checks DRs at compilation time

� AspectBench Compiler (abc) extension

� Polyglot: First version

� JastAdd: Second and current version

Checker (JastAdd – AG – ITD)

Parser (Beaver)

Scanner (JFlex)



34

Using COLA

� Command line examples

abc -ext abc.lsd *.java *.aj *.dr *.dri

abc -ext abc.lsd *.*



35

Example: Extract Method breaks aspect



36

Using LSD to prevent the error

dr DREx [C,A] {

class C {

void m1() {

call(* C.m2());

}

void m2();

}

public aspect A {

pointcut callToM2() : 

call(* C.m2()) && 

withincode(* C.m1());

}

}

dri DRIEx = DREx(C = C;

A = A);

Message generated by COLA:
[Error in class C] Method declaration with required behavior not found:

void m1() { call(* C.m2()); } 

(Check structural rule C within design rule DREx)

Found 1 error(s)!



37

Evaluation



38

Evaluation

� Comparison between LSD and XPI

� Health Watcher concerns

� Transaction and Distribution

� Repository, Persistence and Exception 

Handling (similar)

� Design Quality Checking



39

Evaluation Criteria

� Expressiveness: quantifies the degree to 

which a language is able to express a 

constraint. 

� Three level factor - a language supports, does 

not support, or partially supports a specific rule

� Conciseness: measures how simple is to 

express a constraint in a language

� Number of tokens required to express a constraint



40

Transaction Management Concern

Where:

� SC = Statically checked

� P = Partially checked

� N = No checking (only expressible by means of natural language)



41

Enforcing transactional methods calls



42

Partially checking C4 with XPI 
(extended version)



43

Checking C4 with LSD



44

Distribution Concern



45

Distribution Design Rules (C2 – C6)



46

Checking C2 – C6 with LSD



47

Design Quality Checking



48

Evaluation Results

� Some evidence that LSD enhances the XPI 

approach

� More expressive and concise

� LSD does not hinder the use of XPIs

� More constraints than XPIs



49

Conclusion & Future Work



50

Conclusion

� The definition of a language for specifying 

design rules (LSD)

� A formal specification of the language 

semantics in Alloy

� Evaluation of the proposed language in real 

case studies and its comparison with XPIs

� Tool to support the use of design rules 

(COLA)



51

Future Work

� Add support to invariants, pre- and post 

conditions checked dynamically in DRs

� Tool for checking DR consistency

� Define a complete set of Translations

from LSD to Alloy

� Translation tool from LSD to Alloy



52

Future Work (2)

� IDE extension to support DRs

� Visualization based on the DR instance

� DR-based component generation

� Build a completely new system using LSD 

and XPIs



53

Questions


