Specitying Design Rules 1n
Aspect-Oriented Systems

Alberto Costa Neto S O\

Supervisor: Paulo Borba
Co-Supervisor: Fernando Castor

Federal University of Pernambuco
{acn, phmb, castor}@cin.ufpe.br

Modularizing ot Crosscutting Concerns

with AOP

Examples

o Logging, distribution, tracing, security, persistence and
transactional management

OO0 approach AO approach

Classes with CCC

Classes without CCC CCC implemented by Aspects
tangled and scattered

—

‘Benefits of AOP

= Better code localization (non-scattered)
= Less code (in most cases)

= More implementation units

= Classes are more reusable

= Does itlead to
well modularized systems?

'Does AOP lead to systems that...

= Are easier to understand?

= Can be modified without ripple
effects?

= Support parallel development
and independent evolution of
modules?

Are AO systems Well Modularized?

public class C {
public void ml() {

m2() ;

i
public void m2() {...}

i

public aspect A {
pointcut callToM2() :
call(+ C.m2()) &&

withincode (*

after() : callToM2(){..

}

C.ml());

)

= Comprehensibility?
It is difficult to reason about
a Class or Aspect in
isolation

= Changeability?
Changes in a Class may
break Aspects

= Parallel Development?
Classes must be developed
before Aspects

‘ What causes modularity issues in AOP

= AOP introduces new types of dependencies (hidden parts)
o Privileged aspects (access to private members)
o within and withincode

o (Un)expected join points and members

Aspect Class

Public Part Public Part

Problem

AOP = Crosscutting Concerns Modularization

1 Better Crosscutting Modularity

| Breaks Class Modularity

Is there any solution?

Design Rules

They generalize the notion of information hiding and
interfaces

Constitute the interfaces that designers use to
connect modules with each other

By defining Design Rules we can recover Class
Modularity

Design
Rules

‘ Expressing Design Rules

= Sullivan documented
DRs using natural
language

Q

Verbose,

iIncomplete,

Inconsistent and
ambiguous specifications

Too expressive but
cannot be checked
automatically

DR Update State from HyperCast

Name:

Rarionale:

Depends npon:

Base code scape:

Design Rule:

Example:

State Update

HyperCast's functionality 15 driven by the abstract
state transinons of the protocol FSM. This de-
sign rule ensures that these transitions are visible
to chients of HyperCast and alert clients that they
may not mterfere with HyperCast's code behavior,

1hodke

implements
edu. virginia.cs.mng. hypercast. I NHode+

Provides: Call t0 wvoid =setState{byte) at the
conclusion of perfonming a state transition.
Requires: No changes to the trace of
edu.virginta, oo, mng. hypercast. T Noda+

A pomtcut for advising all state transitions might
be:
pointeut NodastateChanged ()

#all (vold INodes.setState(s«));

10

‘ Expressing DRs with XPIs (Griswold)

public abstract aspect TransactionManagementXPI {
pointcut transactionalMethods(): execution(* HWFacade.»(..)):

pointcut callsToTransactionContext (]
call (void ITransactionMechanism+.begin()) ||
call(void ITransactionMechanism+.commit()) ||
call [void ITransactionMechanism+.rollback())

public pointcut staticMethodScope(): within(HWTransactionAspect);

HWTransactionAspect must call the methods begin(), commit{),
and rollback () defined in the ITransactionMechanism interface.

before() : transactionalMethods() {... tm.begin(); ...}
after returning() : transactionalMethods () {... tm.commit();
after throwing() : transactionalMethods() {... tm.rollback();

These calls should occur within advice like the following ones:

)
ey

‘ XPI Contract

public aspect TransactionContractXPI |
declare error:
TransactionManagementXPl.callsToTransactionContext () &&
| TransactionManagementXPI.staticMethodScope ()
"Contract violation: must call "

= Not expressive enough
= Error-prone

12

‘ Natural Language and XPI Limitations

No language with the specific purpose of
describing DRs in AO systems!

Hypothesis

The use of a language that was designed with the sole
purpose of specifying design rules, with

a clearly defined semantics and expressive enough
to specify most of the design rules in AO systems,

iImproves both class and crosscutting modularity,
when compared to an oblivious approach,

but does not present the problems of
informal design rules and XPls.

14

Our Approach

A Language for Specifying Design Rules
(LSD)

o Decouples classes and aspects

o Improves Class and Crosscutting Modularity

o Syntactically similar to Java/AspectJ

o Unambiguous semantics

o Automatic checking

15

Major Steps ot the Development Process

with LLSD

Discuss and

establish the DRs

|

Write the DRs
in LSD

&
N

Develop
Classes

Develop
Aspects

N
&

Determine a
DR Instance

16

Discussing a DR - Display Update
Concern of a Drawing Tool

FigureElement methods called set* (starting with set, like setX) and
moveBy must be public and return void. Also, all constructors
must be public.

FigureElement constructors and methods called set* or moveBy
are the only possible points of state change in figure elements.

Methods called set* or moveBy and constructors must change
some attribute of the figure element.

Methods called set* or moveBy and constructors cannot call any
method called set* or moveBy from a FigureElement.

A Display class must have a public void update() method.

The aspect responsible for updating the display must declare a
pointcut called stateChange that intercepts calls to the
methods/constructors that change figure elements state based
on their names (predetermined).

The aspect must also contain an advice that calls Display.update().
This method cannot be called from any other place in the system.

‘Writing a DR in 1L.SD

class FigureElement {
all(new(..)) then (public new(..));

* setx(..) { xset(* FigureElement.x); }
+ moveBy (..) { xset(s FigureElement.x); }
new (..) { xset(* FigureElement.x+); }

all(+ set*(..) + * moveBy(..))

then (= #(..)
lecall(+ FigureElement.set+(..));
lcall(+ FigureElement.moveBy (..));

} 0

all{ new(..))

then (new(..) {
lecall(+ FigureElement.set+(..));
lcall(+ FigureElement.moveBy (..));

303
I

class Display {
public void update();
}

aspect DisplayUpdate {
(call(+# FigureElement.set(..)) | |
call(+ FigureElement. . moveBy(..)) ||

call(FigureElement .new(..)))

after (FigureElement fe): stateChange(fe) {
xcall(# Display.update());
h

public pointcut stateChange(FigureElement fe):

dr DisplayUpdateDR [FigureElement, DisplayUpdate, Display] {

all(# set+{..) + #+ moveBy(..)) then (public void =*(..) J;

target (fe) &&

‘ DR Overview

dr DisplayUpdateDR “

__---| Name

[FigureElement, DisplayUpdate, Display | |{

= v\\
class FigureElement { L
‘\ \\\\\
h | Parameters
aspect DisplayUpdate {
W \\\
class Display { Structural
} NEEEEs e Rules

19

‘ Display Structural Rule

class Display {
public void update ();
h

5. Display class must have a public void update() method

20

FigureElement Structural Rule

CI"_L:‘C‘ Eigunranbllamant I
2. FigureElement constructors and methods called set* or moveBy

are the only possible points of state change in figure elements.

'
7
-~

* set x(..) { xset(x FigureElement .x); } A//
+ moveBy (..) { xset(x FigureElement.x); }
new (..) { xset(x FigureElement.x*); }

[3

all(= set*(..) 4+ % ﬁmveBy(..})
then (% «() [i
3. Methods called set* or moveBy and constructors must change

some attribute of the figure element.
all (nexir(; T
then (new(..) {

lcall (* FigureElement.set % (..));
'call (¥ FigureElement . .moveBy(..));
o)

21

DisplayUpdate Structural Rule

6. The aspect responsible for updating the display must declare a pointcut
called stateChange that intercepts calls to the methods/constructors
that change figure elements state based on their names (predetermined).

/
/

aspect DisplayUpdate { »
public pointcut stateChange(FigureElement fe): target(fe) &&
(call(* FigureElement.set x(..)) | |
call (¥ FigureElement.moveBy(..)) ||
call (FigureElement .new(..))):
after (FigureElement fe): stateChange(fe) {
xcall(* Display.update ());
}
¥

1

7. The aspect must also contain an advice that calls Display.update().

This method cannot be called from any other place in the system.
22

‘ Implementing Classes/Interfaces

public class Point implements|DisplayUpdateDR(FigureElementJ|{

protected int x. y:

public Point(int x, int y) {
this.x = x:
this.y = y:

}
public void setX(int x) { this.x = x; }

public void setY (int y) { this.y
public moveBy(int x, int y) {
this.x = x:
this.y = y:

I
L
—

23

‘ Implementing Aspects

public aspect ScreenUpdate
implements |DisplayUpdateDR (DisplayUpdate)| {

private Display display;
public pointcut stateChange(FigureElement fe):
(call (¢ FigureElement.set s« (..)) | |

call (* FigureElement.moveBy(..)) ||
call (FigureElement .new(..)));

after (FigureElement fe): stateChange(fe) {

display .update ();
}

target (fe) &&

24

‘ Detining a DR Instance

Component that
DR Parameter implements the DR

I
|
|
|
\ |
|
|
|

P v

dri DispUpd = DisplayUpdateDR (FigureElement = Point;
DisplayUpdate = ScreenUpdate;
Display = Screen);

25

L.SD Formal Semantics

Specitying L.SD semantics in Alloy

Alloy is a formal modeling language
o Signatures: describe the elements of a model

o Facts: describe relationships between signatures and their
elements

We chose Alloy due to:
o Previous experience

o Tool support to perform analysis in specifications (Alloy
Analyzer)

o Simplicity in expressing first-order logic constraints

We mapped LSD constructs to a Theory specified
in Alloy

27

‘ Theory

= Abstract Syntax of all elements in our theory

Q

o o O O O

Classes ——
Aspects
Methods
Fields
Advices

abstract sig Class extends Type {
vis: one VisibilityQualifier ,
imp: set Interface .

}

abstract sig Aspect extends Type {
attr: set Field .
meth: set Method,
advice: set Advice,
pcut: set PointCut,
decl: set InterTypeDeclaration ,

28

‘ Translating Display to Alloy

class Display {

}

public void update ();
5 \ Translation to Alloy

one sig Display extends Class {}{}
one sig update extends Method {} {
vis = public
return = void
no update.param
update in Display .meth

29

General Translations: Method Declaration

cds
class C 4
. M. H

DS

one sig ' ext Class {}

{ ...

}

one sig M ext Method

{..

3 A

M in C.meths

30

‘ Applying Translations

Apply translations from catalog

DRsin | ____» m)> | DRS In
LSD T T2 | === | Tn Alloy

\ K
P one sig Display extends Class {}{}
class Display { one sig update extends Method {} {
public void update(); vis = public
} return = void

no update.param
update in Display.meth

31

COLA:
Compiler for L.SD and Aspect]

COLA Overview

Tool for checking DRs in Aspectd programs
Checks DRs at compilation time

AspectBench Compiler (abc) extension
o Polyglot: First version
o JastAdd: Second and current version

™3
-

& | L

-8

Checker (JastAdd — AG - ITD)

Parser (Beaver)

Scanner (JFlex)

Using COLA

= Command line examples
abc -ext abc.Isd *.java *.a] *.dr *.dri

abc -ext abc.Isd *.*

34

Example: Extract Method breaks aspect

public class C {
public void ml() {

: m2(); <m—
publiec void m2() {...}

1

public aspect A {
pointcut callToM2() :

call(x C.m2()) &&
withincode(+ C.ml());

after() : callToM2(){...}
}

publiec class C {

}

public void ml() {
} m3 () ;

public void m3() {
} m2 () ;

public void m2() {...}

public aspect A {

}

pointcut callToM2()

call(+ C.m2()) &&
withincode(+ C.ml());

after () : callToM2(){...}

35

Using L.SD to prevent the error

dr DREx [C,A] { dri DRIEx = DREx(C = C;
class C { A = A);
void ml () {

call(* C.m2());
}

void m2 () ;
}
public aspect A {
pointcut callToM2 ()
call(* C.m2()) &&
withincode (* C.ml ());

Message generated by COLA:

[Error in class C] Method declaration with required behavior not found:
void ml() { call(* C.m2()); }

(Check structural rule C within design rule DREX)

Found 1 error(s)!

36

Evaluation

37

Evaluation

Comparison between LSD and XPI

Health Watcher concerns
o Transaction and Distribution

0 Repository, Persistence and Exception
Handling (similar)

Design Quality Checking

38

Evaluation Criteria

Expressiveness: quantifies the degree to
which a language is able to express a
constraint.

o Three level factor - a language supports, does
not support, or partially supports a specific rule

Conciseness: measures how simple is to
express a constraint in a language

o Number of tokens required to express a constraint

39

Transaction Management Concern

Expressiveness Conciseness
Gl | €2 Q3 | @h | 1 |2 €3 | €L | €5
XPI SC| N |SC | N |SsC| 38| =« |16 | = | 25
Extended XPI | SC | N | SC | P [SC | 39 | - 16 | 96 | 25
DR SC SC SC 25 4 5

Where:

o SC = Statically checked

o P = Partially checked

o N = No checking (only expressible by means of natural language)

40

‘ Enforcing transactional methods calls

(C4) The transaction aspect HWiTransactionAspect must call ITransactionMechanism
methods. Moreover, these calls have to occur at specific events, detailed in what
follows:

e A transaction must be started before any facade method ! (the aspect should
call ITransactionMechanism.begin()):

e After the return of any facade method, the current transaction should be
committed (the aspect should call ITransactionMechanism.commit ());

e [f any exception 18 raised by facade methods, the current
transaction should be rolled back (the aspect should call
ITransactionMechanism.rollback()); and

41

Partially checking C4 with XPI

(extended version)

public abstract aspect XPITransaction {

public pointcut expectedCallToBegin ()
within (HWTransactionAspect) &&

call (void ITransactionMechanism+.begin());
public pointcut expectedCallToCommit ()
within(HWTransactionAspect) &&

call (void ITransactionMechanism+4.commit());
public pointcut expectedCallToRollback ()

within(HWTransactionAspect) &&

call (void ITransactionMechanism+.rollback ());
before(): expectedCallToBegin() { }
before (): expectedCallToCommit() { }

before (): expectedCallToRollback() { }

42

Checking C4 with L.SD

dr TransactionManagementDR
[ITransactionMechanism , TransactionManagement , Facade] {

interface I[ITransactionMechanism |
void begin() throws TransactionException;
vold commit() throws TransactionException;
void rollback () throws TransactionException;

1

aspect TransactionManagement {
pointcut transactionalPoints(): call(+ Facade.x(..));

before(): transactionalPoints () {
xcall (void ITransactionMechanism . begin());
}

after() returning: transactionalPoints() {
xcall (void ITransactionMechanism .commit());
}

after () throwing: transactionalPoints() {
xcall (void ITransactionMechanism.rollback ());
!

}

class Facade {}

43

Distribution Concern

Expressiveness
Ol | C2 | G | €4 | Ch | €6 | Cf | C8 | &Y | €10
XPI|SC| N| N N[N | P [|SC|SC| N P
DR |[SC| P [SC | SC | SC | SC | SC [SC | SC | SC
Conciseness
Cl | C2[(€C3|C4|Ch|C6 | C7|C8| CO |C10
XPI | 8 - - - - | 3T | T 7 - 64
DR | 21 | 26 | 6 23 41 | XL | 7 | 12 | 92

44

Distribution Design Rules (C2 — C6)

(C2)

(C3)

(C4)

(C5)
(C6)

Also, there must be an mterface (IRemoteFacade) with the same set of meth-
ods defined by IFacade, but with the difference that each of them contains an
additional Exception (RemoteException) in its throws clause.

There must exist a class that directly implements the local facade (IFacade). In
the case of the HW, this class 1s HealthWatcherFacade.

The remote facade class (RemoteFacade) must provide a static method called
getInstance, which returns an instance of the class.

The remote facade class (RemoteFacade) cannot have a main(String[]) method:

An aspect executing i the client side captures all calls to the local facade
(IFacade), through a pointcut (facadeCalls), and substitutes the original call
by a remote call. delegating this task to the method MethodExecutor. invoke.

45

Checking C2 — C6 with LSD

dr DistributionDR [Component, ILocalFacade, LocalFacade,
IRemoteFacade, RemoteFacade,
ClientDistribution , ServerDistribution] {

interface ILocalFacade {
exists (% #(..)) then (% =*(..));
}

interface IRemoteFacade {
all (+ +(..)) then (+ #*(..) throws includes(RemoteException));
}

class LocalFacade implements ILocalFacade {}
class RemoteFacade {

public synchronized static RemoteFacade getlnstance ();
'T+ main(String []);]

}

aspect ClientDistribution {
pointcut facadeCalls() : call(+ ILocalFacade.+(..));

Object around() : facadeCalls() {
call (Object MethodExecutor.invoke (..));:
¥

46

‘ Design Quality Checking

(C1) The number of public methods must range from 1 to 10;

(C2) No public attribute 1s allowed.

Expressiveness | Conciseness

C1 C2 C1 C2
XPI | N P - 28
DR | 5C SC 23 12

declare error

get (public =

public aspect NonPublicAttributesXPI

* Lk

set (public % #.%)

"Public attributes are prohibited”;

class C {

none (*

dr QualityDR [C] {

range[1..10] (=

#(..))

then (publie

+) then (public =

%)3

E

*

S0

47

Evaluation Results

Some evidence that LSD enhances the XPI
approach

o More expressive and concise

LSD does not hinder the use of XPls
o More constraints than XPls

48

Conclusion & Future Work

Conclusion

The definition of a language for specifying
design rules (LSD)

A formal specification of the language
semantics in Alloy

Evaluation of the proposed language in real
case studies and its comparison with XPls

Tool to support the use of design rules
(COLA)

50

Future Work

Add support to invariants, pre- and post <
conditions checked dynamically in DRs

Tool for checking DR consistency /

Define a complete set of Translations
from LSD to Alloy

Translation tool from LSD to Alloy

Future Work (2)

IDE extension to support DRs
o Visualization based on the DR instance

DR-based component generation

Build a completely new system using LSD
and XPls

52

‘ Questions

